
Stationary equations of non-autonomous symmetries

V.E. Adler, ITP

A well-known construction scheme for exact solutions of integrable equations is
related to stationary equations for higher symmetries from a commutative subalgebra.
If we use also the noncommutative symmetries then the resulting reduction lose the
Liouville integrability property, but retains the Painlev�e property. Such reductions
include string equations related to classical symmetries such as the Galilean boost
and the scaling. These solutions are not very well studied, but we know from the works
by Suleimanov, Dubrovin and others that among them there are special solutions that
describe asymptotics in the vicinity of the breaking point.

In the talk, some recent results are presented that show that reductions obtained by
use of master-symmetries may turn useful in studying another physically important
regime, such as the decay of step-like solutions. Already published results are related
to the KdV equation and the Volterra lattice; some new examples are also reported.
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Motivation: it is likely that various scenarios of the development of oscillations in
nonlinear models can be described by this kind of constraints



Commutative and noncommutative symmetries

Consider an evolution equation
ut = f [u]

(either continuous PDE like KdV or D∆E like Volterra lattice) admitting a symmetry

uT = g[u]

(that is, [Dt, DT ] = 0). Then the stationary equation

g[u] = 0

is a constraint consistent with the given equation. This is a well-known method to
reduce the dimension of the problem, since we replace the original PDE with an ODE.
What is the general form of such reduction? Recall that in a typical situation, an
integrable hierarchy consists of two sequences of �ows

utj = fj , uτj = gj , j = 0, 1, 2, . . .

which constitute the Lie algebra with the commutation relations like

[Dtj , Dtk ] = 0, [Dτj , Dtk ] = kDtj+k−1
, [Dτj , Dτk ] = (k − j)Dτj+k−1

(the picture can be more complicated for systems with several �eld variables).



Therefore, the general form of the stationary equation is

α0f0 + · · ·+ αmfm + β0g0 + · · ·+ βngn = 0. (1)

However, when we try to solve (1), it turns out that not all symmetries are equally
good: their commutativity properties are important.

• Novikov equation. The most favourable case is when all βj = 0, that is DT belongs
to a commutative Lie subalgebra of the symmetries. Then the stationary equation
inherits this subalgebra, so that the ODE (1) turns out to be Liouville integrable.
This is the case of �nite-gap and multisoliton solutions.

• Generalized �string� equation. In contrast, if at least one βj 6= 0 , that is DT

contains some members of the additional noncommutative Lie subalgebra then the
constraint (1) is not Liouville integrable. Instead, it is a Painlev�e type equation. This
is the case which we are interested in.

The noncommutative symmetries were discovered in

Ibragimov, Shabat, Dokl. Akad. Nauk SSSR 244:1 (1979) 57;
Fuchssteiner, Progr. Theor. Phys. 70:6 (1983) 1508;
Orlov, Shulman, Theor. Math. Phys. 64:2 (1985) 862;
Burtsev, Zakharov, Mikhailov, Theor. Math. Phys. 70:3 (1987) 227.

http://mi.mathnet.ru/eng/dan42245
http://dx.doi.org/10.1143/PTP.70.1508
http://dx.doi.org/10.1007/BF01017968
http://dx.doi.org/10.1007/BF01040999


Lax representations

To explain the di�erence between Dtj and Dτj , let us recall the construction of zero
curvature repesentation with variable spectral paprameter from [BZM].

The auxiliary linear problems

Ψx = UΨ, Ψtj = VjΨ, Ψτj + λjΨλ = WΨ ⇒

the compatibility conditions

Utj = Vj,x + [Vj , U ], Uτj + λjUλ = Wj,x + [Wj , U ].

Here U, V,W are matrices depending on the �eld variables and the spectral parameter
λ. The commutation relation between Dtj and Dτk are the same as for the operators

λj , λk
d

dλ
.

If the stationary equation (1) contains a linear combination of fj only then it admits
the Lax representation

Vx = [U, V ], V =
∑

αjVj ⇒ Dx(detV ) = 0,

so that detV is the �rst integral for (1) depending on λ.



In the general case, the Lax representation for stationary equation takes the form
which is usual in the method of isomonodromy deformations:

Wx = K(λ)Uλ + [U,W ], W =
∑

(αjVj + βjWj), K =
∑

βjλ
j .

Now detW is preserved only at the zeroes of K(λ):

Dx(detW (λi)) = 0, K(λi) = 0,

and this set of �rst intgerals is insu�cient to provide the Liouville integrability.



Korteweg�de Vries equation

The Lie algebra of the KdV equation

ut = u3 + 6uu1, uj := ∂jx(u),

is generated by the recursion operator R = D2
x + 4u+ 2u1D

−1
x :

utj = fj = Rj(u1), uτj = gj = Rj(6tu1 + 1), j = 0, 1, 2, . . . .

For instance,

ut0 = f0 = u1 (x-translation)

ut1 = f1 = (u2 + 3u2)x (t-translation)

ut2 = f2 = (u4 + 10uu2 + 5u21 + 10u3)x (simplest higher symmetry)

. . .

uτ0 = g0 = 6tu1 + 1 (Galilean boost)

uτ1 = g1 = 3tf1 + xu1 + 2u (scaling)

uτ2 = g2 = 3tf2 + xf1 + 4u2 + 8u2 + 2u1u−1 (master-symmetry)

. . .



We see that the noncommutative part of the hierarchy is also nonautonomous and
nonlocal. In each �ow, except for Dτ0 and Dτ1 , we have to add a new nonlocal
variable which is equivalent to introducing a potential for the next conservation law.
For instance, v = u−1 in g2 is di�erentiated according to the rule

vx = u, vt = u2 + 3u2.

The stationary equation

E = α0f0 + · · ·+ αmfm + β0g0 + · · ·+ βngn = 0

for any linear combination of the symmetries satis�es the identity

Dt(E) = (D3
x + 6uDx + 6u1)(E) = 0,

that is, this is some ODE consistent with KdV.

The case with all βj = 0 brings to the construction of �nite-gap solutions

Novikov, Funct. Anal. Appl. 8:3 (1974) 236;
Dubrovin, Matveev, Novikov, Russ. Math. Surv. 31:1 (1976) 59.

http://dx.doi.org/10.1007/BF01075697
http://dx.doi.org/10.1070/RM1976v031n01ABEH001446


Adding of just one noncommutative symmetry gj spoils the integrability, but retains
the Painlev�e property.

The stationary equation for the KdV itself + the Galilean or scaling symmetry is
equivalent to the group reduction and results in the selfsimilar solutions governed by
the P1 and P2 equations, respectively.

The next example is the so-called string equations which are of the form

higher symmetry + classical symmetry = 0

Moore, Comm. Math. Phys. 133:2 (1990) 261.

https://doi.org/10.1007/BF02097368


Oscillating zone in the vicinity of the breaking point

The string equations turn out to be important in
the study of the Gurevich�Pitaevskii problem on
the breaking of the wave front. The idea is very
simple: take the stationary equation f2 + g1 = 0
and apply the dispersionless limit:

u4 + 10uu2 + 5u21 + 10u3 + 6tu+ x = 0 (2)

↓
10u3 + 6tu+ x = 0. (3)

Eq. (3) is the fold singularity which de�nes the
desired asymptotics of solutions.

Suleimanov, JETP 78:5 (1994) 583;
Dubrovin, Comm. Math. Phys. 267 (2006) 117.

Gurevich, Pitaevskii,
JETP 38:2 (1974) 291.

A natural conjecture is that the oscillating zone is described by some solution of (2)
with such asymptotics. This is the case, indeed, although the study of this solution
is a di�cult problem. Even its existence was rigorously proved only in

Claeys, Vanlessen, Nonlinearity 20:5 (2007) 1163.

http://jetp.ac.ru/cgi-bin/e/index/r/105/5/p1089?a=list
https://doi.org/10.1007/s00220-006-0021-5
http://jetp.ac.ru/cgi-bin/e/index/e/38/2/p291?a=list
https://doi.org/10.1088/0951-7715/20/5/006


Decay of initial discontinuity

Another very important Gurevich�Pitaevskii
problem is about the evolution of step-
like initial data. This problem was analyzed
asymptotically by the Whitham averaging
method and by some version of the Inverse
Scattering Method.

Hruslov, Math. USSR Sb. 28:2 (1976) 229;
Cohen, Comm. PDEs 9:8 (1984) 751;
Kappeler, Di�. Eq. 63:3 (1986) 306;
Khruslov, Kotlyarov, Adv. Sov. Math.
19 (1994) 129.

Gurevich, Pitaevskii,
JETP Lett. 17:5 (1973) 193.

However, this problem does not admit explicit solutions similar to solitons in the
rapidly decaying case. It is hardly possible that such a solution can be given by
elementary functions or even classical special functions. The conjecture is that an
�explicit� answer can be given by the stationary reduction related with the master-

symmetry Dτ2 [Adler, J. Nonl. Math. Phys. 27:3 (2020) 478] .

Let us describe this equation and its solution in more detail.

http://dx.doi.org/10.1070/SM1976v028n02ABEH001649
https://doi.org/10.1080/03605308408820347
https://doi.org/10.1016/0022-0396(86)90059-8
http://www.jetpletters.ac.ru/ps/1540/article_23557.shtml
https://doi.org/10.1080/14029251.2020.1757236


Master-symmetry + ...

The general linear combination of symmetries of order ≤ 5 brings to the stationary
equation

g2 + k1g1 + k2g0 + k3f2 + k4f1 + k5f0 = 0.

The coe�cients kj can be �xed by suitable point transformations, so that this can
be simpli�ed to

g2 − 4g1 = 0.

Proposition. KdV equation ut = u3 + 6uu1 is consistent with the 6-th order ODE

3t(u4 + 10uu2 + 5u21 + 10u3)x + x(u2 + 3u2)x + 4u2 + 8u2 + 2u1v

− 4(3t(u2 + 3u2)x + xu1 + 2u) = 0, vx = u. (4)

It is easy to prove that equation (4) admits two constant solutions:

u = 0 and u = 1.

The goal is to demonstrate that there exist common solutions of the pair KdV +
(4) which are regular for all x, t and has di�erent constant asymptotics for x→ ±∞
(notice, that there is no much di�erence between the left and right steps, thanks to
the symmetry x→ −x, t→ −t).



Regularity conditions

A new feature in (4), comparing to the
string equations, is that now t is the
coe�cient at the highest order derivative
(it is easy to see that this is always the
case when the order of noncommutative
component is greater or equal to the
order of the commutative one).

As the result, the line t = 0 is the
�xed singularity of this system, that is
a generic solution of the Cauchy problem
for this pair of equations is singular along
this line.

On the other hand, this means that if we require that the solution must be regular
then the order of equation is e�ectively lowered at this line. The Cauchy data at
t = 0 must satisfy a simpler 4-th order equation

x(u2 + 3u2)x + 4u2 + 8u2 + 2u1v − 4(xu1 + 2u) = 0, vx = u. (5)

Moreover, the order can be reduced to 2 by use of �rst integrals (which follow from
the Lax representation) and (5) turns out to be equivalent to P5 equation.



In turn, equation (5) has the �xed singular point x = 0. Again, if we require that the
solution must be regular then the order of equation is e�ectively lowered to 1 since the
Cauchy data at this point must be constrained. Such solutions can be computed as
the Taylor expansions is some �nite neighbourhood of the origin and then continued
numerically for all real x, t by solving the ODE.
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A typical regular solution of (5) has the form of slowly decaying (like x−1) oscillations
near u = 1, separated by a well near the origin, with di�erent oscillation amplitudes
on the left and on the right.



Limiting transition to step-like solutions

By smoothly varying the initial data, it is possible to broaden the well near the origin.
Under this process, the solution remains practically unchanged on one half-line, but
changes drastically on the another one. As the result the oscillating zone moves from
the origin to in�nity. In the limit, we obtain a separatrix step-like solution.

The numerical experiments suggest that equation (4) admits four such step-like
solutions for any value of �rst integrals H(0) > −4 and H(−1) > 0.



The plots for one of the step-like solutions for H0 = −2, H1 = −6.

compression wave rarefaction wave



Landau�Lifshitz equation

The hierarchy of the equation

st = [s, sxx + Js], s ∈ R3, 〈s, s〉 = 1, J = diag(J1, J2,−J1 − J2),

can be generated by the local master-symmetry:

sτ = x[s, sxx + Js] + [s, sx], [Dτ , Dtj ] = jDtj+1
,

st1 = sx,

st2 = st,

st3 =
(
sxx +

3

2
〈sx, sx〉s

)
x
− 3

2
〈s, Js〉sx,

. . .

moreover, in the (partially) isotropic case there are additional point symmetries of
the form st0 = As, A = −At.
The simplest nonautonomous constraint is of the form

2t
(
sxxx + 3〈sx, sxx〉s+

3

2
〈sx, sx〉sx −

3

2
〈s, Js〉sx

)
− x[s, sxx + Js]− [s, sx] + ksx = 0. (6)



Also the details are very di�erent comparing to the KdV case, the main steps of the
construction remains the same.

• (6) is a 6-th order ODE system with 2 �rst integrals from the Lax representation.
The regularity condition at t = 0 reduces the order to 2 and we arrive to P6 equation.
The isotropic cases lead to other Painlev�e equations as the limiting cases.

• The regularity condition at x = 0 distinguishes some special solutions which are
de�ned for all x, t. However, at the moment it is not clear, whether there exist
separatrix solutions like the step-like solutions.

• Similar results can be obtained for the NLS equation and other 2-component
evolutionary systems. The master-symmetry can be local as in the LL equation or
non-local as in the NLS or KdV, but it turns out that this is not very important. In
all examples the stationary equation for the master-symmetry is of 6-th order, there
are 2 �rst integrals and the regularity condition also reduces the order by 2.



Volterra lattice

The symmetry algebra of the Volterra lattice (now un 6≡ ∂nx (u) !!!)

un,t = un(un+1 − un−1), n ∈ Z,

contains the following equations:

un,t1 = f1 = un(un+1 − un−1),

un,t2 = f2 = un(hn+1 − hn−1), hn := un(un+1 + un + un−1),

. . .

un,τ1 = g1 = tf1 + un,

un,τ2 = g2 = tf2 + un
((
n+ 3

2

)
un+1 + un −

(
n− 3

2

)
un−1

)
,

. . .

The di�erentiation Dτ1 corresponds to the scaling transformation and Dτ2 is the
master-symmetry. In contrast to the KdV case it is local, but it is not very essential.
However, some calculations are simpler than in the KdV case.

Adler, Shabat, JETP Lett. 108:12 (2018) 825;
Theor. Math. Phys. 201:1 (2019) 1442.

https://doi.org/10.1134/S0021364018240013
https://doi.org/10.1134/S0040577919100039


Higher symmetry + scaling

• Let us consider the linear combination un,t2 + 2un,τ0 = 0.

Fokas, Its, Kitaev, Russ. Math. Surv. 45:6 (1990) 135;
Comm. Math. Phys. 142 (1991) 313.

One can easily prove that it is reduced to the 3-point dP1 equation

un(un+1 + un + un−1) + 2tun + n+ (−1)nb+ c = 0 (dP1)

with integration constants b, c. This constraint turns the VL into a coupled system for
un−1, un which is equivalent to P4 equation for y(t) = un(t):

y′′ =
(y′)2

2y
+

3

2
y3 + 4ty2 + 2(t2 − α)y +

β

2y
, (P4)

α =
1

2
(n− 3(−1)nb+ c), β = −(n+ (−1)nb+ c)2.

The map (un−1, un) 7→ (un, un+1) is one of the B�acklund transformations for P4.

http://dx.doi.org/10.1070/RM1990v045n06ABEH002699
https://doi.org/10.1007/BF02102066


• In order to obtain an analog of the string equation (2) corresponding to the fold singularity,
we have to use the next higher symmetry. The stationary equation

un,t3 + k2vn,t2 + k1un,t1 + 2k0un,τ1 = 0

gives, after integration, the 5-point O∆E

un(hn+1 + hn−1 + (un+1 + un)(un + un−1))

+ k2hn + k1un + 2k0tun + k0n+ β + γ(−1)n = 0.

The �dispersionless limit� un = u yields the
cubic parabola like in (3).

In contrast to the KdV case, a remarkable
fact is that for some special choices
of parameters this equation admits
hypergeometric type solutions. This
correspond to the cases when u0 = 0,
so that the problem is reduced to
the half-line. For instance, if we take
k2 = k1 = β = γ = 0 and k0 = 10 then
the solution is an odd function of n.

t = 4
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u3 + 2tu+ n = 0



Master-symmetry + ...

Let us consider more complicated case

un,τ2 − 4aun,τ1 − dun,t1 = 0.

Here, a can be scaled either to 0 or to 1 and the shift of t makes possible to omit the term
un,t2 . Like in the [FIK] example, this is a 5-point constraint which can be reduced to a
3-point one, although it is not so obvious.

Proposition. The VL is consistent, for any constants a, b, c, d, with the equation

Fn = (qn+1 + qn)(qn + qn−1)un − 4(aq2n + (−1)nbqn + c) = 0, (7)

where
qn := 2tun + n− d.

In terms of qn, the constraint (7) turns into the dP34 equation while the VL itself turns into
a coupled system for un−1, un which is equivalent to the P5 equation.

• Instead of 4-th order equation in the KdV case we have just 2-nd order for the VL. The
regularity condition is also simpli�ed: now it becomes zero order, that is, explicitly solved:

un(0) = a+
4(−1)nb(n− d) + 4c+ a

4(n− d)2 − 1
if d 6∈ 1

2
+ Z

(if d is half-integer then we have to slightly change formula by passing to the limit).



Although this family of admissible initial conditions is very simple, the corresponding
solutions are rather interesting. For instance, it contains the step-like solution (for d = − 1

2
)

with the initial data
u0 = 0, un(0) = 1, n > 0.

This should not be understood literally as an analog of the KdV step, this is just a toy model
solvable in terms of the hypergeometric functions rather than the Painlev�e transcendents.
However, the qualitative behaviour is rather similar.

compression wave rarefaction wave

(In contrast to the KdV, the front of the compression wave is �xed, but we can do this in
the KdV by the Galilean transformation.)
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